An assessment of Queensland's CO₂ geological storage prospectivity – the Queensland CO_2 geological storage atlas

Barry Bradshaw¹, Lynton Spencer¹, Anna-Liisa Lahtinen¹, Kamal Khider¹, Damien Ryan², Jim Colwell¹, Alfredo Chirinos¹, John Bradshaw¹, John Draper³, Jonathan Hodgkinson³ & Mike McKillop³

Abstract

In 2008, the Queensland Government launched its Carbon Geostorage Initiative to assess Queensland's geological storage potential by identifying, characterising and evaluating sedimentary basins with potential for long-term, secure storage of CO2 from current and future stationary CO₂ sources. As part of this initiative, 36 onshore basins have been assessed for their CO₂ geological storage prospectivity through injection into either: regional reservoir-seal intervals ('saline reservoirs' and aquifers); depleted oil and gas fields; or deep unmineable coal seams (Fig. 1). This comprehensive state-wide regional assessment is based on the technical (geological) suitability for geological storage, and does not consider factors such as potential interference with other resources, distance from emissions nodes or absolute storage volumes. Basins were assessed by evaluating the potential of their component reservoir-seal intervals to effectively inject, store and contain CO₂. Methodologies have been developed that allow the estimation of storage capacity volumes within highly prospective reservoir-seal fairways at a regional scale. These estimates reflect conservative values that are more reliable than previous theoretical estimates, which relied upon access to pore space at the physical limit of the pore rock volume to accept fluids. Results show that the greatest potential to store the large quantities of CO₂ required to make deep cuts in Queensland's stationary emissions is to use deep, regional reservoir-seal intervals in major hydrocarbon and/or groundwater bearing basins using structural traps or migration assisted storage (MAS) mechanisms. Depleted oil and gas fields and deep unmineable coal seams provide only limited opportunities for geological storage of CO₂ in Queensland.

Migration Assisted Storage

The Bowen, Cooper, Eromanga, Galilee and Surat basins contain extensive, quartz-rich fluvial reservoirs sealed by fluvial-lacustrine or marine argillaceous rocks that have either produced hydrocarbons and/or are major groundwater aguifers, and are evaluated as having the highest prospectivity for CO₂ geological storage (Table 1). Maximum potential storage areas have been mapped in these basins based on the extent of highly prospective reservoir fairways (Fig 2), and are used together with specific reservoir data, calculated temperature and pressure gradients, and consideration of the percentage of the total rock volume affected by the CO2 plume to estimate using the MAS storage capacities trapping mechanism. Capacities range from >46 Gt in the Eromanga Basin, to ~3 Gt in the Galilee and Surat basins, and <0.4 Gt in the Bowen Basin. Other basins are evaluated as having either low prospectivity or are unsuitable for geological storage.

reservoirs in Queensland. C = conventional seal; U = uncor permeability reflects sampling from both reservoir and seal intervals. unconventional seal

Figure 3: Maximum theoretical CO₂ replacement volume for petroleum fields in Queensland.

References

Bradshaw B, Spencer LK, Lahtinen AC, Khider K, Ryan DJ, Colwell JB, Chirinos A, and Bradshaw J. Queensland carbon dioxide geological storage atlas. Compiled by Greenhouse Gas Storage Solutions on behalf of Queensland Department of Employment, Economic Development and Innovation, 2009 (http://www.dme.qld.gov.au/mines/storage_atlas.cfm).

Figure 4: Location of producing CSG fields with 2008 2P gas reserves shown, and areas mapper measures occur at depths of 400–1,000 m

Copies of this paper & poster can be downloaded from the CGSS website (www.cgss.com.au). ©CGSS

CO₂ Geological Storage Solutions (CGSS), PO Box 769, Fyshwick, ACT 2609, Australia (www.cgss.com.au) QGC, Level 25, 275 George Street, Brisbane, Qld 4001, Australia Department of Employment, Economic Development and Innovation, 80 Meiers Road, Indooroopilly, Qld 4068, Australia (www.deed.iqld.gov.au)

Other Storage Options

Other potential storage options are limited to petroleum fields once depleted, and deep unmineable coal seams. The maximum theoretical replacement volume for 295 petroleum fields in Oueensland is estimated at <0.4 Gt based on June 2008 reserves and production data, with ~96% of this volume in gas pools, and 65% of this volume from just 25 fields in the Bowen, Surat, Cooper and Eromanga basins (Fig 3). However, most large fields are still producing and unlikely to be available for storage in the near future, and are under demand for natural gas storage, particularly for coal-seam gas (CSG) fields feeding into LNG plants. Although Queensland contains vast coal and CSG resources, storage of CO2 in coal seams will be limited to depths of 400 1,000m (Fig 4), where injection rates are likely to be <1 mmscf/d. Storage in coal seams is thus unlikely to occur on a large-scale, and is most likely to be used where it is technically and economically feasible to enhance CSG production through CO₂ injection.

basins in Queensland

Conclusions

Geological storage assessments have often been undertaken at a country or regional scale using various levels of quality, coverage, and public availability of data, as well as using different standards. Our regional assessment of CO2 geological storage in Queensland basins shows that sustainable, large-scale storage of CO₂ requires using MAS within regionally extensive reservoir-seal fairways. This study also highlights the importance of a prospectivity-based approach to regional assessments that uses reservoir-seal pairs as the primary evaluation units, and calculation of conservative maximum theoretical storage volumes based on the mapped extent of highly prospective reservoir-seal intervals and site-specific reservoir data.

<=500 Mw 501 - 1000 Mw 1001 - 1500 Mv ė